A Review of the Structure and Dynamics of Upper-Level Frontal Zones

1986 ◽  
Vol 114 (2) ◽  
pp. 452-499 ◽  
Author(s):  
Daniel Keyser ◽  
M. A. Shapiro
2016 ◽  
Vol 73 (7) ◽  
pp. 2699-2714 ◽  
Author(s):  
Mankin Mak ◽  
Yi Lu ◽  
Yi Deng

Abstract This paper reports a diagnosis of the structure and dynamics of upper-level fronts (ULFs) simulated with a high-resolution Weather Research and Forecasting Model with diabatic heating versus one without diabatic heating. The ULFs of both simulations develop in about 6 days as integral parts of intensifying baroclinic waves. Each has a curvilinear structure along the southern edge of a relatively narrow long tongue of high potential vorticity in which stratospheric air is subducted to different tropospheric levels by synoptic-scale subsidence. It resembles a veil in the sky of varying thickness across the midsection upstream of the trough of the baroclinic wave. The 3D frontogenetical function is shown to be a necessary and sufficient metric for quantifying the rate of development of ULFs. Its value is mostly associated with the contribution of the 3D ageostrophic velocity component. Upper-level frontogenesis is attributable to the joint direct influence of the vortex-stretching process and the deformation property of the 3D ageostrophic flow component. The model also generates a spectrum of vertically propagating mesoscale gravity waves. The ULFs simulated with and without diabatic heating processes are qualitatively similar. The ULF is considerably more intense when there is heating. The heating, however, does not make a significant direct contribution to but indirectly does so through its impacts on the subsidence field of the baroclinic wave.


2008 ◽  
Vol 136 (4) ◽  
pp. 1475-1491 ◽  
Author(s):  
Roger M. Wakimoto ◽  
Hanne V. Murphey

Abstract An analysis of a cold front over the eastern Atlantic Ocean based on airborne Doppler wind syntheses and dropsonde data is presented. The focus and unique aspect of this study is a segment of the front that was near the center of the cyclone. The dual-Doppler wind synthesis of the frontal zone combined with an average dropsonde spacing of ∼30 km covers a total distance of >450 km in the cross-frontal direction. The finescale resolution and areal coverage of the dataset are believed to be unprecedented. The cold front was characterized by a distinct wind shift and a strong horizontal temperature gradient. The latter was most intense aloft and not at the surface, in contrast to the classical paradigm of surface cold fronts. The shear of the alongfront component of the wind was relatively uniform as a function of height within the frontal zone. This observation is contrary to studies suggesting that frontal zones decrease in intensity above the surface. The surface convergence within the frontal zone was weak. This may have been related to the closeness of the analysis region to the surface low pressure. The prefrontal low-level jet and the upper-level polar jet were both shown to be supergeostrophic based on the analysis of the geopotential height field. It is believed that a major contributing factor to the former was the isallobaric wind from the large pressure tendencies associated with the moving cyclone. A dry pocket accompanied by descending air was noted out ahead of the low-level jet. This pocket produced a region of potential instability that could have supported deep convection, although none was observed on this day. The vertical structure of the front revealed couplets of potential vorticity that appeared to be the result of diabatic heat sources from condensation. The diabatic effect in the frontogenesis equation was the dominant term, exceeding the combined effects of the confluence and tilting terms. As a result, an alternating pattern of frontogenesis–frontolysis developed along the flanks of the maxima of diabatic heating. This study highlights the importance of taking diabatic heating into account even in the absence of deep convection.


2019 ◽  
Vol 487 (6) ◽  
pp. 684-690
Author(s):  
O. A. Razorenova ◽  
P. A. Shabanov

An updated climatology of upper level frontal zones (UFZ) of the Northern Hemisphere is presented, based on a numerical analysis of geopotential gradients and the allocation of maximum gradient zones. Differences in the position of the UFZ during the development of meridional and zonal processes are revealed. Based on the analysis of years with the predominance of various forms of circulation, it is shown that the position of high-altitude frontal zones is an objective diagnostic tool for studying modern climate variability.


2006 ◽  
Vol 73 ◽  
pp. 109-119 ◽  
Author(s):  
Chris Stockdale ◽  
Michael Bruno ◽  
Helder Ferreira ◽  
Elisa Garcia-Wilson ◽  
Nicola Wiechens ◽  
...  

In the 30 years since the discovery of the nucleosome, our picture of it has come into sharp focus. The recent high-resolution structures have provided a wealth of insight into the function of the nucleosome, but they are inherently static. Our current knowledge of how nucleosomes can be reconfigured dynamically is at a much earlier stage. Here, recent advances in the understanding of chromatin structure and dynamics are highlighted. The ways in which different modes of nucleosome reconfiguration are likely to influence each other are discussed, and some of the factors likely to regulate the dynamic properties of nucleosomes are considered.


1998 ◽  
Vol 77 (2) ◽  
pp. 357-362 ◽  
Author(s):  
A. Matic, L. Borjesson

Author(s):  
V. D. Tereshchenko ◽  
E. B. Vasil'ev ◽  
O. F. Ogloblina ◽  
V. A. Tereshchenko ◽  
S. M. Chernyakov

Sign in / Sign up

Export Citation Format

Share Document